
Figure 6 Patients’ NMDAR antibodies selectively reduce the density of total and synaptic NMDAR clusters in hippocampus of

mice. (A) Hippocampus of mice infused for 14 days (Day 18) with patients’ CSF (upper row) or control CSF (lower row) immunolabelled for PSD95

and NMDAR. Images were merged (merge) and post-processed to demonstrate co-localizing clusters (co-localization). Squares in ‘co-localization’

indicate the analysed areas in CA1, CA3 and dentate gyrus. Scale bar = 200 mm. (B) Three-dimensional projection and analysis of the density of
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that reported using in vitro studies with cultured rat

hippocampal neurons (Hughes et al., 2010; Moscato

et al., 2014). Moreover, autopsies of patients with

anti-NMDAR encephalitis showed that the hippocampal

regions with highest concentration of brain-bound antibo-

dies were also the areas with lower expression of NMDAR

(Dalmau et al., 2007). In the current model, patients’

antibodies did not alter AMPAR cluster density or protein

concentration; these findings are in line with those reported

with cultured neurons where the clusters of AMPAR and

AMPAR-mediated currents were not directly affected

(Hughes et al., 2010). These experiments, however, did

not explore whether paradigms that normally induce

long-term potentiation, and therefore increase the number

of synaptic AMPAR, were altered by patients’ antibodies.

Mikasova et al. (2012) showed that neurons exposed

to patients’ NMDAR antibodies failed to show an increase

in cell surface AMPAR after induction of chemical long-

term potentiation. Another study examining the acute

metabolic effects of patients’ antibodies after injection

into rat brain showed impairment of NMDA and

AMPA-mediated synaptic function (Manto et al., 2010).

In the present model, we did not perform electrophysiolo-

gical studies on acute slices of brain (a goal of future

Figure 6 Continued

total clusters of PSD95 and NMDAR, and synaptic clusters of NMDAR (defined as NMDAR clusters colocalizing with PSD95) in a representative

CA3 region (square in A ‘co-localization’). Merged images (merge, PSD95 green, NMDAR red) were post-processed and used to calculate the

density of clusters (density = spots/mm3). Scale bar = 2mm. (C–F) Quantification of the density of total (C) and synaptic (D) NMDAR clusters,

PSD95 clusters (E), and total/synaptic AMPAR and PSD95 clusters (Day 18 only, F) in a pooled analysis of hippocampal subregions (CA1, CA3,

dentate gyrus) in animals treated with patients’ CSF (dark grey) or control CSF (light grey) on the indicated days. Mean density of clusters in

control CSF treated animals was defined as 100%. Data are presented as mean � SEM. For each time point five animals infused with patients’ CSF

and five with control CSF were examined. Significance of treatment effect was assessed by two-way ANOVA with an a-error of 0.05 (asterisks) and

post hoc testing with Sidak-Holm adjustment ($) (C–E) or unpaired t-test (F). *, $P5 0.05; **, $$P5 0.01; ***, $$$P5 0.001. See Supplementary

Table 2 for detailed statistics.

Figure 7 Patients’ NMDAR antibodies selectively reduce the protein concentration of NMDAR in hippocampus of mice. (A)

Representative immunoblots of proteins extracted from hippocampus of animals infused with patients’ CSF (P) or control CSF (C) sacrificed at

the indicated time points and probed for expression of GluN1 (NMDAR), PSD95 and b-actin (loading control). Note that there is less visible

GluN1 expression on Days 13 and 18. (B, D and E) Quantification of total NMDAR (B), AMPAR (D) or PSD95 (E) protein in animals treated with

patients’ CSF (filled columns) or control CSF (open columns) sacrificed at the indicated time points (AMPAR Day 18 only, D). Results were

normalized to b-actin (loading control). Mean band density of animals treated with control CSF was defined as 100%. Data are presented as

mean � SEM. For each time point six animals infused with patients’ CSF and six with control CSF were examined (for Days 26 and 46, only five

animals treated with patient’s CSF were available). Significance of treatment effect was assessed by two-way ANOVA with an a-error of 0.05

(asterisks) and post hoc testing with Sidak-Holm adjustment ($). $$P5 0.01; ***P5 0.001. See Supplementary Table 2 for detailed statistics. (C)

Correlation between concentration of human IgG bound to hippocampus (x-axis, highest hippocampal IgG intensity was defined as 100%) and

hippocampal NMDAR protein concentration in mice sacrificed on Day 18 (R2 = 0.69, P = 0.003). Filled circles: mice infused with patients’ CSF

(n = 5), open circles: mice infused with control CSF (n = 5).
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studies); however, there is reported evidence that patients’

NMDAR antibodies suppress induction of long-term po-

tentiation when directly applied to mouse hippocampal

slices (Zhang et al., 2012). Work with cultured neurons

indicates that the decrease of synaptic NMDAR currents

is likely a result of the antibody-mediated low receptor

levels, as no direct antibody blockade was detected

(Moscato et al., 2014).

Our study has limitations related to the type of disease

and symptoms to model. For example, different from other

models of antibody-mediated CNS disorders where the

antibodies result in characteristic symptoms (e.g.

Figure 8 Absence of neuronal apoptosis, deposits of complement, and lymphocytic infiltrates in the hippocampus of mice

infused with patients’ CSF. (A and B) TUNEL and cleaved caspase 3 immunolabelling of a representative area of CA3 (area with maximal IgG

binding and lower NMDAR concentration) of an animal infused with patients’ CSF, showing lack of apoptotic cells. A section of the same region in

an animal with transient middle cerebral artery occlusion (stroke model) shows apoptotic cells in the penumbra (left). (C) Same CA3 region as in

(A) immunostained for C5b-9 showing lack of deposit of complement. A section of the same region in the indicated stroke model shows presence

of complement in the penumbra (left). (D and E) Same CA3 region as in (A) immunostained for T (CD3) and B (CD45R) lymphocytes showing

absence of inflammatory infiltrates. A section of spleen was used as control tissue showing the presence of CD3 (green) and CD45R (red) cells.

Scale bar = 10mm. Total number of animals examined: patients’ CSF n = 5; control CSF n = 5. Scale bars = 20mm.
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amphiphysin antibodies and visible muscle spasms)

(Sommer et al., 2005) or focal deficits with visible tissue

changes (e.g. AQP4 antibodies and neuromyelitis optica)

(Hinson et al., 2012; Bradl and Lassmann, 2014), anti-

NMDAR encephalitis results in a broader spectrum of

symptoms where memory and behavioural deficits occur

early, and the structural alterations are not visible unless

the NMDAR clusters or protein concentration are mea-

sured. It is not surprising that in the current model the

full spectrum of symptoms, such as seizures, dyskinesias

or coma, did not occur. Studies with NMDAR antagonists

have shown that the progression of symptoms (from behav-

ioural and memory deficits to unresponsiveness with cata-

tonic features and coma) correlated with the intensity of the

decrease of receptor function (Javitt and Zukin, 1991).

Therefore, it is likely that prolonged infusion or higher

concentration of patients’ antibodies would cause

additional symptoms. This is supported by the current

model, in which the time course of symptom development,

brain-bound antibody concentration, and decrease of syn-

aptic NMDAR correlated well with each other. Future

experiments using prolonged infusion or higher concentra-

tion of patients’ antibodies may also result in symptoms

beyond hippocampal-parahippocampal regions. Compared

with the hippocampus, other brain regions normally have

lower density of NMDAR, and appeared to be less access-

ible to the ventricularly infused antibodies. Direct injection

of antibodies into those brain regions can be considered,

but we previously tried bilateral hippocampal infusion

using the same osmotic pump approach, resulting in more

limited antibody diffusion and no symptoms (data not pub-

lished). Moreover, the phenotype of the current model is

likely influenced by the strain of mice. In this study we used

C57BL6/J mice because we were interested in the effects on

memory and behaviour, but this strain is one of the most

resistant to develop seizures (Ferraro et al., 2002).

The antibody-induced depletion of synaptic NMDAR

along with the similarities between the human disease and

the phenotypes induced by NMDAR antagonists (phencyc-

lidine, ketamine or MK801) have suggested points of

convergence with one of the most influential theories of

schizophrenia, the NMDA-hypofunction model (Olney

and Farber, 1995; Kehrer et al., 2008). The presence of

positive (hallucinations, delusions, hyperactivity) and nega-

tive (decreased motivation, flat affect, deficit of memory

and learning) symptoms is, however, not identical among

the drug-induced phenotypes and also varies among animal

species (Javitt and Zukin, 1991). It has been suggested that

NMDAR-bearing parvalbumin-positive GABAergic inter-

neurons are disproportionally more sensitive to NMDAR

antagonists than other neurons (Li et al., 2002).

Interestingly, a genetic model of partial ablation of the

GluN1 subunit of NMDAR in corticolimbic GABAergic

interneurons resulted in symptoms partially resembling

our GluN1 immunological model of receptor depletion,

including memory deficits and anhedonic behaviours

(Belforte et al., 2010). Differences related to the underlying

mechanisms (pharmacologic blockade, genetic or immuno-

logic NMDAR depletion) and regions where the

NMDAR function is depleted (general, corticolimbic, or

hippocampal-parahippocampal) likely influence the clinical

phenotypes.

Overall, the current findings provide robust evidence that

antibodies from patients with anti-NMDAR encephalitis

alter memory and behaviour through reduction of cell-

surface and synaptic NMDAR, and therefore support

the use of treatments directed at decreasing the levels of

antibodies or antibody-producing cells. This approach can

now be adapted to (i) model other aspects of the disease by

changing the duration and dosing of antibody infusion, or

strain of mice; (ii) investigate other disorders of memory

and behaviour that occur in association with antibodies

against other cell surface or synaptic proteins, such as

AMPAR or GABA(B)R (Lai et al., 2009; Lancaster et al.,

2010); and (iii) determine whether compounds such as

Ephrin-B2 ligand that has been shown to prevent the desta-

bilizing NMDAR crosslinking effects of patients’ antibodies

improve or alter the course of the disease (Mikasova et al.,

2012).
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